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Abstract

This paper presents biped walking control using a library of optimal trajectories. Biped walking

control is formulated as an optimal control problem. We use a parametric trajectory optimization

method to find the periodic steady-state walking trajectory. As a second stage, we use Differential

Dynamic Programming (DDP) to generate a library of optimal trajectories and locally linear models

of the optimal control law, which are used to construct a more global control law. The proposed

controller is compared with a trajectory tracking controller using optimal gains. The utility and

performance of the proposed method is evaluated using simulated walking control of a planar five-

link biped robot.
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1 INTRODUCTION

The control of biped walking remains a difficult problem due to high dimensionality, nonlinearity,

the intermittent contact between the feet and the ground, and constraints on kinematics and dynamics,

such as joint limitations, the foot clearance requirement, and foot-ground contact conditions [1]. By

far, the most common approach to biped walking control is through tracking pre-computed reference

trajectories. These trajectories can be computed based on the concept of ZMP (Zero Moment Point) [1],

where emphasis is placed on enlarging the stability margin during gait planning [2, 3]. Trajectories

can also be computed based on the LIPM (Linear Inverted Pendulum Model) [4]. By simplifying the

dynamics to a linear system, modern control techniques can be used to plan gaits [5–7]. Trajectory

optimization of various cost criteria can be used to generate reference trajectories [8–13]. Feedback

control methods, such as PID controllers, computed torque, and ZMP feedback control, are used to track

the reference trajectories [2, 14–16]. However, the stability obtained this way may be limited and even

small perturbations may lead to a fall [17]. To improve the stability that can be obtained from such a

tracking control law, online adaptation of the choice of the reference trajectory was proposed [17]. But the
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Figure 1: Sketch of trajectory library control of biped walking. The shaded area indicates where the

controller works. a) The periodic steady-state trajectory. b) After adding optimal trajectory segments.

stiff tracking control laws it uses require large joint torques if a deviation from the reference trajectories

occurs [17].

In this paper, we formulate biped walking control as an optimal control problem. Dynamic Program-

ming (DP) can be used to find an optimal control law for constrained nonlinear systems [18]. Using

appropriate state space decomposition and/or model reduction, DP has been applied to walking [19–21].

However, when the dimension of the state space is high, the computation and even the storage of the

optimal control law becomes difficult [22]. Differential Dynamic Programming (DDP) is a local version

of dynamic programming [22–24], that it applies the principle of optimality in the neighborhood of a can-

didate trajectory. This allows the coefficients of a quadratic expansion of the value function and a linear

expansion of the optimal control law to be computed along the trajectory. These coefficients may then

be used to compute an improved trajectory [22–24]. After DDP’s convergence to an optimal trajectory,

locally linear models of the optimal control law are available. DDP has been applied to biped walking

control [25,26]. Morimoto and Atkeson [25] proposed minimax DDP to generate a robust local controller

for biped walking. The stability obtained using only one trajectory is limited, and this paper explores

using multiple trajectories to achieve robustness. Tassa et al. [27] proposed Receding Horizon DDP

to generate time-invariant local controllers. In a more recent paper [28] the authors combine receding

horizon control with a stored limit cycle. They describe a similar approach to finding the limit cycle [29].

This work and [30] stress the value of combining online trajectory optimization with stored trajectories,

which we will explore for biped walking in future research.

For DDP’s convergence to an optimum, a good initial trajectory is important for highly nonlinear and

constrained systems, such as bipedal walking. In the present paper, we take advantage of a parametric

trajectory optimization method to find coarse initial trajectories for DDP to further refine. Parametric

trajectory optimization methods have risen to prominence in solving optimal control problems. In a

parametric trajectory optimization method, the state and the control variables or the coefficients of their



function approximations are taken as optimization variables [8, 9, 31–35]. An optimal control problem is

transcribed into a nonlinear programming problem of finite dimension, which can be solved by general

nonlinear programming methods, such as SQP (Sequential Quadratic Programming) [31,36]. Parametric

trajectory optimization methods are good at handling constraints and are robust in terms of finding a

solution when little is known about the final result [31–33]. But parametric trajectory optimization

methods take the system dynamics as constraints rather than generating trajectories by integrating the

system dynamics, thus they may produce less accurate and sometimes physically incorrect solutions

[31]. To improve the low accuracy of a parametric trajectory optimization method, Hardt [9] combined

direct minimization, shooting, and multiple shooting method. Stryk and Bulirsch [37] proposed a hybrid

approach of a direct collocation method and a multiple shooting method.

Fig. 1 sketches the vision of how the proposed method would work for biped walking control. On the

left is a plot of the periodic steady-state walking trajectory (a periodic trajectory with the lowest cost) at

a specified speed. We use a parametric trajectory optimization method to find the periodic steady-state

trajectory. It is then used as an initial trajectory for DDP to further refine and generate locally quadratic

models of the value function and locally linear models of the optimal control law around it. The periodic

steady-state trajectory can then be stabilized using nearest neighbor control and the resulting basin of

attraction might look something like the shaded area in Fig. 1(a).

We use a trajectory library and locally linear controllers to construct a walking controller. As a

second step, DDP can quickly generate many optimal trajectory segments starting from nearby states.

The resulting basin of attraction of the trajectory library might look something like the shaded area in

Fig. 1(b). In contrast to most trajectory optimization approaches to walking, we formulate the trajectory

optimization with an infinite time horizon so that the corresponding value function and control law are

time-independent and functions only of state.

A number of efforts have been made to use collections of trajectories to represent policies. Early work

in this area is reviewed by [38, 39]. Additional work includes [40, 41]. There has been a great deal of

work in computer animation and videogames using trajectory libraries, for example [42]. [17,43,44] used

trajectory libraries for controlling humanoid walking using manually designed and optimized trajectories.

A related technique in path planning is the creation of Probabilistic Roadmaps (PRMs) [45], which is a

form of trajectory library. [26,46] used locally linear controllers along optimal trajectories to construct a

nonparametric representation of a global control law, and information transfer between stored trajectories

to form sets of globally optimized trajectories for control. Tassa et al. [27] used a trajectory library

to synthesize a global controller for a simulated multi-link swimming robot. [47, 48] used local LQR

controllers to construct a nonlinear feedback policy. In our previous work, a trajectory library was

applied to standing balance of humanoid robots [49].

This article is organized as following: in Section 2, the dynamics of the simulated five-link robot

model is described. In Section 3, the optimal control problem of biped walking is formulated. Then, a

parametric trajectory optimization method is proposed, which solves the periodic steady-state trajectory.

Differential Dynamic Programming with an infinite time horizon is introduced, which generates optimal

trajectories and time-invariant locally linear models of the optimal control law. In Section 4, simulation



Table 1: Physical parameters of the simulated robot

calf thigh torso

mass [kg] 6.90 5.68 50.00

inertia [kg · m2] 0.15 0.10 1.50

length [m] 0.38 0.39 0.80

lcm[m] 0.24 0.19 0.29

results are presented. Conclusions and future work are discussed in Section 5.

2 ROBOT MODEL
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Figure 2: a) Sarcos Primus System hydraulic humanoid robot. b) Simplified structure of the biped robot

used for our study.

The robot, as shown in Fig. 2(b), is assumed to be planar and consist of a torso and two identical legs

with knees. Furthermore, all body parts have mass, are rigid, and are connected with revolute joints. It

is modeled on our Sarcos Primus System hydraulic humanoid robot shown in Fig. 2(a) and its kinematic

and dynamic parameters are listed in Table 1. The Sarcos robot uses hydraulic actuators and load sensors

to control torque of each joint [50]. In our planar model, all walking cycles take place in the sagittal plane

and consist of successive phases of single support and impact. There is no double support. The walking

cycle has two mathematical models: ordinary differential equations, describing the dynamics during the

single-support phase, and an impact model, describing the instantaneous change in the velocities and

coordinate relabeling after the impact event.



2.1 Single Support Model

In the single-support phase, the dynamic model of the robot has five degrees of freedom. Let q :=

(q1, . . . , q5)
T be the generalized coordinates describing the configuration of the robot depicted in Fig.

2(b). The same dynamic model is used no matter which leg is the stance leg and the coordinates are

relabeled after the impact event. The dynamics equations can be derived using the method of Lagrange.

The result is a standard second order system

M(q)q̈ + h(q, q̇) = B(q)u, (1)

where M(q) ∈ R
5×5 is the inertia matrix, h(q, q̇) ∈ R

5 is the vector of centrifugal, Coriolis, and gravity

forces, B(q) is the matrix defining how the joint torques u := (u1, . . . , u5)
T enter the model. Though a

stance foot is not explicitly modeled while on the ground, the ankle may apply a torque u1 between the

calf and the ground in the pitch direction. Defining x := (qT, q̇T)T, the second order system of (1) can

be written in state space form as

ẋ =





q̇

M−1(q)
(

− h(q, q̇) + B(q)u
)



 = f(x,u). (2)

2.2 Impact Model

The impact between the swing leg and the ground is modeled as a contact between two rigid bodies.

We assume the instantaneous contact of the swing leg end with the ground results in no rebound and no

slipping of the swing leg. The impulsive forces due to the impact result in an instantaneous change in the

velocities, but there is no instantaneous change in the positions. The impact model results in a smooth

map [51]:

x+ = H(x−), x− ∈ S (3)

where x− is the value of the state just prior to impact, x+ is the value of the state just after impact,

S = {x|pv
2(x) = 0, ṗv

2(x) < 0} on flat ground (the definition of pv
2 is shown in Fig. 2(b)). The function

H represents the velocity change caused by impact and the relabeling of the robot’s coordinates which

makes the swing leg become the stance leg.

The dynamics of the overall biped robot is described by a nonlinear system with discontinuous dy-

namics. The robot mechanical system evolves according to ordinary differential equations (2) until the

state enters set S when impact occurs and a new initial state from which the robot model evolves is

given by (3). The ground reaction forces, fh and fv as depicted in Fig. 2(b), can be calculated using the

inverse dynamics of the robot.



3 Control Using Trajectories and Local Models

3.1 Optimal Control Formulation

Biped walking control is formulated as an infinite time optimal control problem. The cost functional

should have a discount factor to remain finite,

J :=

∫

∞

0

e−βtc(x(t),u(t))dt, (4)

where β > 0 is the discount rate and c(·, ·) is the cost rate function. A state-feedback control law,

u = u∗(x), is optimal if the cost functional J is minimized given the system followed u∗(x) subject to

the dynamics equations (2) and (3). In addition, constraints on the state variables of the form

xl ≤ x(t) ≤ xu, (5)

and on the control variables

ul ≤ u(t) ≤ uu. (6)

can be applied.

3.2 Periodic Steady-State Trajectory Optimization

To generate an initial limit cycle, we can take one phase of single support and one phase of impact

as one walking cycle. Given the periodic trajectory starts and ends at the dynamics discontinuity, we

uniformly divide the time interval (0, T ) into N small time intervals, 0 = t0 < t1 < . . . < tN = T , and use

a Runge-Kutta scheme to discretize the dynamics equations of (2) during the single-support phase [31]:

xk+1 = F (xk,uk), (7)

where xk and uk denote the values of the state and the control at the sampled points. The cost functional

on a periodic trajectory can then be approximated by the cost function,

J =
1

1 − λ

[

λNφ(xN ) +

N−1
∑

k=0

λkL(xk,uk)
]

, (8)

where λ = exp(−βT/N) is the discount factor, φ(·) is the impact cost, L(·, ·) is the one step cost function

defined as

L(x,u) = c(x,u)T/N. (9)

Thus, we can find the periodic steady-state trajectory with minimal cost through trajectory optimization.

By treating the period T and the state and control variables at sampled points as optimization variables,

the trajectory optimization problem is cast as a parametric nonlinear programming (NLP) problem. It

minimizes the cost function (8) subject to the discrete time dynamics equations (7), constraints on the

state (5), on the control (6), and

H(xN ) = x0 (10)

xN ∈ S. (11)

We solve this NLP problem with SNOPT [36].



3.3 Optimization Criteria and Constraints

The one step cost function L(x,u) we use penalizes the joint torques, uTWuu, the walking speed

error, wv(ṗ
h
3 (x) − vd)

2, and the horizontal component of the ground reaction force, wr

(

fh(x)
)2

, where

Wu, wv, and wr are penalty weights, vd and ṗh
3(x) are respectively the desired walking speed and the

horizontal velocity of the hip, and fh is the horizontal component of the ground reaction force (as shown

in Fig. 2(b)). It also has some “shaping” terms: a penalty on the height of the swing foot when it is below

a certain height hd, wc(p
v
2 − hd)

2, and a penalty on the angular velocity of the torso, wt(q̇1 + q̇2 + q̇3)
2.

The impact cost φ(x) penalizes the impulse F during impact as FTWIF, where WI is a weight matrix.

The robot’s mechanism has some limitations on the ranges of joint angles and joint velocities, which

are taken as the constraints on the state (5), and on the ranges of joint torques, which are taken as

the constraints on the control (6). The physics of contact between the stance foot and the ground also

introduces some constraints. Although we do not model the foot, the horizontal position of the center of

pressure (CoP) with respect to the end of stance leg can be calculated by xcop = u1/fv, where u1 is the

ankle torque of the stance leg and fv is the vertical component of the ground reaction force (as shown in

Fig. 2(b)). To keep the stance foot flat on the ground, the center of pressure (CoP) must be kept inside

the foot-support region, xcop ∈ Ω [1]. To avoid slipping, the ground reaction force must be kept inside

the friction cone, |fh/fv| ≤ µ, where µ is the static friction coefficient. We penalize the magnitudes of

the ankle torque, u1, and the horizontal component of the ground reaction force, fh, so that the result

of trajectory optimization can satisfy these foot-ground contact constraints.

3.4 Nearest Neighbor Control Using Local Models

We use Differential Dynamic Programming to further refine the periodic trajectory given by Section

3.2, generate additional trajectory segments, and generate local models of the value function and the

optimal control law at the same time. Discrete time DDP takes advantage of the Bellman equation [22–24],

which is

V (xk) = min
uk

[L(xk,uk) + λV (F (xk,uk))] (12)

during the single-support phase or

V (xk) = φ(xk) + V (H(xk)) (13)

at impact. V (xk) describes the minimal cost-to-go when the optimal feedback control, u = u∗(x), is

applied. By formulating trajectory optimization with an infinite time horizon, V (xk) becomes a time-

invariant function only of state.

Given the jth candidate trajectory xj , DDP integrates the first and second partial derivatives of the

value function backward to compute an improved value function and control law. The update rule needs



to accommodate the discount factor and is given by [26]:

Q = L(x,u) + λV (F (x,u)) (14)

Qx = Lx + λVxFx (15)

Qu = Lu + λVxFu (16)

Qxx = Lxx + λFT

x VxxFx + λVxFxx (17)

Qxu = Lxu + λFT

x VxxFu + λVxFxu (18)

Quu = Luu + λFT

u VxxFu + λVxFuu (19)

K = Q−1
uuQux (20)

∆u = Q−1
uuQu (21)

Vx(k − 1) = Qx − QuK (22)

Vxx(k − 1) = Qxx − QxuK (23)

where x and u subscripts indicate partial derivatives. These partial derivatives are computed as a back-

ward sequence starting from the end of the trajectory. For the periodic steady-state trajectory, we use a

second order Taylor series approximation of the value function at the beginning of the trajectory, V (0),

and a linear approximation of H to approximate the value function at the end of the trajectory, V (N):

V (N) = φ(xN ) + V (H(xN ))

≈ φ(xN ) + V (x0) + Vx(0)(H(xN ) − x0)

+
1

2
(H(xN ) − x0)

TVxx(0)(H(xN ) − x0).

(24)

Therefore,

Vx(N) = φx(xN ) + Vx(0)Hx(xN ) + (H(xN ) − x0)
TVxx(0)Hx(xN ) (25)

Vxx(N) = φxx(xN ) + Hx(xN )TVxx(0)Hx(xN ). (26)

A new updated initial state is given by

x
j+1

0 = x
j
0 − ǫVxx(0)−1Vx(0), (27)

and a new updated trajectory xj+1 is generated by integrating the system dynamics forward in time

using the linear feedback law:

uj+1 = uj − K[xj+1 − xj ] − ǫ∆u, (28)

where ǫ ∈ (0, 1). These processes are repeated until convergence to the optimum is obtained. Before

integrating the system dynamics forward for the first time, the value function and its partial derivatives

are integrated backward until they are nearly unchanged along the initial trajectory given by SNOPT.

The amount of backward integration is determined by the discount factor. In practice, the inversion of

Quu must be conditioned. In the case of close to singular Quu, a Levenberg-Marquardt-like scheme can

be used [52]. Also, the initial state update (27) and the control sequence update (28) are performed with



an adaptive line search of ǫ [23]. To prevent the second order partial derivatives of the value function from

becoming infinite during infinite horizon value iteration, very small quadratic penalties on the deviations

from a candidate trajectory are used. This approach is similar to regularizing by adding positive numbers

to the diagonal of Vxx on each iteration [53]. To satisfy the constraint on knee angle, spring dampers are

used to prevent the knees from overextension during forward simulation. The control variables on the left

hand side of Eq. (28) are limited to satisfy constraints (6). Constraints (10) and (11) are approximated

by augmenting the impact cost φ with quadratic penalties on the constraint violations (the penalty weight

currently used is 104).

Byproducts of DDP are locally linear models of the optimal control law, u = u∗

k −Kk(x−x∗

k), where

x∗

k and u∗

k are the sampled state and the corresponding control on the optimal trajectory, and Kk is

given by (20). By formulating trajectory optimization with an infinite time horizon, these local models

are time-invariant and spatially localized.

To construct a control law from spatially localized local models, the simplest way is to use the nearest

local model to predict the optimal control for the current state. Defining a Euclidean distance as

∆xTD∆x, (29)

where D is a distance metric and ∆x := x − x∗

k is the deviation of current state x from sampled state

x∗

k, nearest neighbor control is given by

u = u(x) = ū− K̄(x − x̄), (30)

where x̄ is the closest x∗

k to x, and ū and K̄ are the corresponding u∗

k and Kk. The distance metric D

is a diagonal matrix and its elements for joint angles and joint angular velocities are respectively 1 and

10−4 according to their ranges. To keep the stance foot flat on the ground, ankle torque u1 is limited by

the constraint on CoP, u1/fv ∈ Ω, before it is applied to the ankle joint. The control variables on the

left hand side of Eq. (30) are also limited to satisfy constraints Eq. (6).

3.5 Trajectory Library

Outside of the basin-of-attraction of the periodic steady-state trajectory, the control law is expected

to perform poorly. One solution to this problem is to fill the portion of state space of interest with a

library of non-periodic optimal trajectory segments and consider all of them during nearest neighbor

lookup [26, 27, 49, 54].

To generate additional optimal trajectory segments, we use nearest neighbor control and existing tra-

jectories to generate a new fixed-length trajectory segment starting from a nearby state. This trajectory

is then re-optimized by DDP. For the update rule at the dynamics discontinuity, φ, H , and 1 respectively

substitute for L, F , and λ. The value function at the end point of the trajectory segment, V (N), is

approximated by the local model of the value function at the closest state in the library.

To decide where to add a new trajectory, one approach is based on “failure testing”. We apply

impulsive perturbations of different magnitudes at different locations and time on the simulated robot. If

the simulated robot falls down, we add a new optimal trajectory segment to the library. To keep the size



Table 2: Parameters used by trajectory optimization

Wu 10−3diag(10, 1, 1, 1, 1) wv 102

WI diag(10−1, 10−3) wc 103

wr 10−6 hd 0.05

wt 10 β 0.5

xu [0.8, 0.0, 0.8, 0.8, 0.8, xl −[0.8, 0.8, 0.8, 0.8, 0.0,

5.0, 5.0, 5.0, 5.0, 5.0]T 5.0, 5.0, 5.0, 5.0, 5.0]T

uu [50.0, 500, 500, 500, 500]T ul −[50.0, 500, 500, 500, 500]T

of the library small and also satisfy the performance requirement, we can generate a trajectory library

on an adaptive grid based on the simulated performance. If the cost’s reduction is larger than a given

performance bound after re-optimization, a newly generated optimal trajectory segment will be stored in

the library [49].

4 Results

We used 20 time steps for SNOPT to solve the periodic steady-state trajectory and 100 time steps

for DDP to further refine it and generate additional optimal trajectory segments for a walking speed of

0.5 m/s. The parameters used for trajectory optimization are listed in Table 2. The stick diagram of the

robot’s motion with the periodic steady-state trajectory is shown in Fig. 3(a), in which the configuration

of the robot is drawn every 50 ms. The torques are shown in Fig. 3(b). The norms of the feedback gain

vectors for each control are shown in Fig. 3(c). They do not change much during one walking cycle.

We used the steady-state trajectory and its local models to initialize the trajectory library. We

applied horizontal impulsive perturbations of different magnitudes at the hip during walking. If the

simulated robot fell down after a perturbation, we added a new trajectory segment to the library. For

example, the simulated robot fell down due to a 12 Newton-seconds perturbation using only the periodic

steady-state trajectory. We added an optimal trajectory segment starting from the state just after

a 10 Newton-seconds perturbation to the library. Now the proposed controller could handle up to a

20 Newton-seconds perturbation. We use the phase portraits of the motions of a virtual leg to show low

dimensional projections of optimal trajectories. The virtual leg is defined as the line connecting the end

of one leg to the hip. Its pitch angle θ and angular velocity θ̇ are with respect to the upright in the world

frame and clockwise is defined as the positive direction. An example trajectory library is shown in Fig.

4(a). It contains the periodic steady-state trajectory and 12 optimal trajectory segments starting from

the states just after -4 or 10 Newton-seconds perturbations at the hip at different times. The proposed

controller using this trajectory library was evaluated using perturbations of -10,-6,6,16, and 20 Newton-

seconds at the hip. As shown in Fig. 4(b), all trajectories eventually return to the periodic steady-state

trajectory. In general we found that trajectory libraries needed only a relatively small number of entries

(for example 12 trajectory segments and a periodic trajectory in this case) to handle reasonably sized
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Figure 3: The periodic steady-state trajectory at 0.5 m/s walking speed. a) The stick diagram of the

robot motion with the periodic steady-state trajectory. The configuration of the robot is drawn every

50 ms. b) The joint torques on the steady state trajectory. u1, u2, u3 are those of the ankle, the knee,

the hip pitch of the stance leg, u4 and u5 are those of the hip pitch and the knee of the swing leg. c)

The norms of the feedback gain vectors for each control, |K(i, ·)|, on the steady state trajectory, where

ui = u∗

i − K(i, ·)(x − x∗). d) The values of the value function on the steady state trajectory.
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Figure 4: The trajectory library and responses to perturbations. The phase portraits of the motions of

one virtual leg are shown. The solid line is the periodic steady-state trajectory. Note that this is only a

2D projection of 10D state space, so the trajectories may cross. The discontinuities of the phase portraits

are caused by the impulsive perturbations. a) An example trajectory library. The optimal trajectory

segments are shown as dashed lines. b) Responses to impulsive perturbations.
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Figure 5: Responses to a 16 Newton-seconds perturbation at 1.4 seconds (the vertical dashed lines in

red). a) The position and the velocity of the center of mass, the position of CoP, and the ground reaction

forces. b) The phase portrait of the motion of one virtual leg. The discontinuity of the phase portrait is

caused by the impulsive perturbation.
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ẋ
c
o
m

(m
/s

)

0 1 2 3 4 5 6 7 8
−0.1

0

0.1

x
c
o
p

(m
)

0 1 2 3 4 5 6 7 8
−500

0

500

f
h

(N
)

0 1 2 3 4 5 6 7 8
0

1000

2000

f
v

(N
)

Time (s)

(a)

−0.4 −0.2 0 0.2 0.4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

θ (r)

θ̇
(r

/s
)

 

 

Normal walking
Response to a continuous push

(b)

Figure 6: Responses to a continuous forward push of 10 Newtons from 3 to 5 seconds as dashed lines.

The solid lines are responses of normal walking. a) The position and the velocity of the center of mass,

the position of the CoP, and the ground reaction forces. b) The phase portrait of the motion of one

virtual leg.

0 1 2 3 4 5 6 7 8

0

2

4

x
c
o
m

(m
)

0 1 2 3 4 5 6 7 8
0

0.5

1

ẋ
c
o
m

(m
/
s)

0 1 2 3 4 5 6 7 8
−0.1

0

0.1

x
c
o
p

(m
)

0 1 2 3 4 5 6 7 8
−500

0

500

f
h

(N
)

0 1 2 3 4 5 6 7 8
0

1000

2000

f
v

(N
)

Time (s)

(a)

−0.4 −0.2 0 0.2 0.4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

θ (r)

θ̇
(r

/s
)
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Incline of 5 deg
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Figure 7: Walking on an incline of 5 degrees as dashed lines. The solid lines are responses of walking

control on a level ground. a) The position and the velocity of the center of mass, the position of the CoP,

and the ground reaction forces. b) The phase portrait of the motion of one virtual leg.



0 1 2 3 4 5 6 7 8

0

2

4

x
c
o
m

(m
)

0 1 2 3 4 5 6 7 8
0

0.5

1

ẋ
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Accurate model
+30% more torso mass

(b)

Figure 8: Walking control with a model error of 30% more torso mass as dashed lines. The solid lines

are responses of walking control with an accurate model. a) The position and the velocity of the center

of mass, the position of CoP, and the ground reaction forces. b) The phase portrait of the motion of one

virtual leg.

perturbations. For the 16 Newton-seconds impulsive perturbation at the hip, the position xcom and the

velocity ẋcom of the center of mass and the ground reaction forces are shown in Fig. 5(a). It shows

that the center of pressure is kept inside the foot-support region, xcop ∈ [−0.1, 0.1], and the ground

reaction force is kept inside the friction cone, fh/fv ∈ [−1, 1]. As shown in Fig. 5(b), the trajectory

converges to the periodic steady-state trajectory and the walking speed is maintained at 0.5 m/s after

the perturbation.

For continuous perturbations, the controller’s responses to a continuous forward push of 10 Newtons

lasting 2 seconds are shown in Fig. 6(a). It shows that the robot walks slightly faster than the desired

walking speed (0.5 m/s) when the push is applied. The phase portrait of the motion of one virtual leg

in Fig. 6(b) shows that the proposed controller drives the robot’s trajectory back to the limit cycle of

normal walking after the push.

The proposed controller was also evaluated using walking on inclines between -5 and 5 degrees. We

only used the periodic steady-state trajectory. Simulation results show the proposed controller generated

using a level ground still works. As shown in Fig. 7(a), the average velocity of the center of mass nearly

does not change from 0.5 m/s. Fig. 7(b) shows that the controller drives the robot’s trajectory to a

different limit cycle when it walks on an incline of 5 degrees.

We evaluated the proposed controller using walking control with a model error of +30% more torso

mass. As shown in Fig. 8(a), the vertical component of the ground reaction force increases but the robot

can still walk. The walking speed changes very little in this simulation. As shown in Fig. 8(b), the

controller drives the robot’s trajectory to a different limit cycle because of the model error.

Our approach is able to handle different contact models. An analytical foot-ground contact model

(rigid body impact model) is employed for offline controller construction. The resultant controller is

tested using other foot-ground contact models, such as a spring damper model. For the spring damper

contact model, the joint between the stance leg’s end and the ground is modeled as a planar joint of 3
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Figure 9: Phase portraits of one virtual leg of normal walking using different foot-ground contact models.
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Figure 10: The height of the left foot during walking using different foot-ground contact models.
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Figure 11: The ground reaction force at the left foot during walking using different foot-ground contact

models. a) The horizontal component of the ground reaction force. b) The vertical component of the

ground reaction force.



degrees of freedom (DoFs) and the whole system has 7 DoFs. The ground reaction force of each leg’s end

is calculated by





fx

fy



 = −





kx 0 cx 0

0 ky 0 cy





















∆x

∆y

ẋ

ẏ

















, (31)

where fx and fy are respectively the horizontal and vertical components of the ground reaction force, kx

and ky are spring constants, cx and cy are damping coefficients, ∆x and ∆y are respectively the sliding

distance and the depth under the ground of the leg’s end, ẋ and ẏ are the velocities of the leg’s end. The

proposed controller is evaluated using kx = 104, cx = 103, cy = 103, and different ky. As shown in Fig.

9, the proposed controller generated using the rigid body impact model transfers well to spring damper

models of different spring constants, although the robot trajectory converges to different limit cycles. For

a specified foot, its height (as shown in Fig. 10) and the ground reaction force at it (as shown in Fig. 11)

during walking are also different.

We compared the proposed controller with a trajectory tracking controller. For the trajectory tracking

controller, each joint is driven by an independent PD+Feedforward controller, uj(i) = u∗

j (i)− kpj(qj(i)−

q∗j (i))−kdj(q̇j(i)− q̇∗j (i)), where kpj and kdj are respectively the proportional and derivative gains of joint

j. uj(i), qj(i), and q̇i(i) are respectively the control torque, the angle, and the angular velocity of joint j

at time index i, while u∗

j (i), q∗j (i), and q̇∗j (i) are the corresponding variables of the periodic steady-state

trajectory. We optimized the total cost to find kpj and kdj and compared the minimized total cost over

6 seconds with that of the proposed controller. All the following simulations start from the same initial

state on the optimal trajectory and use the periodic steady-state trajectory only. For normal walking,

the cost for the trajectory tracking controller is 3.661, while the corresponding cost for the proposed

controller was 2.951. For walking in the presence of an impulsive perturbation of 5 Newton-seconds, the

cost for the former was 21.679, the corresponding cost for the later was 3.697.

5 Conclusions

We use a parametric trajectory optimization method to solve the periodic steady-state trajectory in

regular walking at a specified speed, which is then used as an initial trajectory for Differential Dynamic

Programming (DDP) to re-optimize and generate local models of the value function and the control law.

We also use DDP to generate additional optimal trajectory segments to cover a larger portion of state

space. By formulating the optimal control problem with an infinite time horizon, we get time-invariant

locally linear models of the optimal control law, which are then used to construct a more global control

law for biped walking. The results show lower cost from the proposed controller than a trajectory tracking

controller using optimal gains.
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